14 | 0 | 5 |
Downloads | Citas | Reads |
[目的]筛选出贵州省区域试验中丰产、稳产性好的品种和鉴别力高、代表性好的试点。[方法]利用AMMI模型和GGE双标图对2021—2022年贵州省7个玉米品种在7个试点的丰产性、稳定性和适应性进行分析,评价试点的鉴别力和代表性。[结果]2021年更禾玉582、毕成168、金玉631丰产性较好,金白玉6号、更禾玉582稳定性较好;六枝、贞丰、六盘水鉴别力较好,毕节、六盘水、安顺代表性较强。2022年更禾玉582、遵试2101丰产性较好,更禾玉582、金玉631、遵试2101稳定性较好;贵阳、六枝鉴别力较好,贞丰、安顺、毕节代表性较强。[结论]更禾玉582的丰产性和稳产性均较好,综合表现最好;六枝鉴别力最好,毕节代表性最强。
Abstract:[Objective] In order to screen out varieties with high yield and stable yield, as well as test sites with high discrimination and good representativeness in regional trials in Guizhou Province.[Method] The AMMI model and GGE biplot were used to analyze the yield, stability, and adaptability of 7 maize varieties in Guizhou Province from 2021 to 2022 in 7 test sites, and to evaluate the discriminability and representativeness of the pilot projects.[Result] In 2021, Gengheyu 582, Bicheng 168, and Jinyu 631 had higher yield, while Jinbaiyu 6 and Gengheyu 582 had better stability; test sites in Liuzhi, Zhenfeng, and Liupanshui had better discriminability, while test site in Bijie, Liupanshui, and anshun had stronger representativeness. In 2022, Gengheyu 582 and Zunshi 2101 had higher yield, while Gengheyu 582, Jinyu 631, and Zunshi 2101 had better stability; test sites in Guiyang and Liuzhi had the better discriminability, while test site in Zhenfeng, Bijie had stronger representativeness.[Conlusion] Gengheyu 582 has good yield and stability, with the best overall performance; test site in Liuzhi had the best discriminability and test site in Bijie had the strongest representativeness.
[1] 陈朝阳,魏建伟,陈淑萍,等.黄淮海夏玉米品种籽粒产量基因型与环境互作分析[J].分子植物育种,2019,17(8):2749-2760.
[2] 严威凯.双标图分析在农作物品种多点试验中的应用[J].作物学报,2010,36(11):1805-1819.
[3] 姜秀英,马作斌,王庆新,等.基于R语言的GGE双标图在水稻品种区域试验中的应用[J].中国稻米,2024,30(2):57-60,67.
[4] 王磊,程本义,鄂志国,等.基于GGE双标图的水稻区试品种丰产性、稳产性和适应性评价[J].中国水稻科学,2015,29(4):408-416.
[5] 李余良,熊婷.甜玉米品种区域试验产量和试点环境的GGE双标图分析[J].玉米科学,2022,30(3):47-53,62.
[6] 龚锡震,柏光晓,任洪,等.基于AMMI模型对青贮玉米区域试验稳定性和适应性分析[J].种子,2019,38(4):110-113.
[7] 张海斌,吴晓华,于美玲,等.内蒙古区域试验小麦品种(系)籽粒产量AMMI模型分析[J].作物杂志,2023(3):27-34.
[8] 张恺东,张凡巧,董博,等.基于R语言的AMMI模型和GGE双标图在大豆区试中的应用评价[J].中国农学通报,2024,40(13):140-145.
[9] 许乃银,荣义华,李健,等.GGE双标图在陆地棉高产稳产和适应性分析中的应用:以长江流域棉区国审棉花新品种‘鄂杂棉30’为例[J].中国生态农业学报,2017,25(6):884-892.
[10] 陈四龙,李玉荣,程增书,等.用GGE双标图分析种植密度对高油花生生长和产量的影响[J].作物学报,2009,35(7):1328-1335.
[11] 魏鹏程,陈杜,罗英舰,等.基于AMMI和GGE双标图的贵州不同生态区春玉米丰产性稳产性和试点辨别力评价[J].玉米科学,2023,31(1):22-31.
[12] 朱艳彬,樊晓琴,吉闻天,等.基于AMMI模型和GGE双标图的西北春玉米品种区域试验综合评价[J].中国农业大学学报,2023,28(12):15-24.
[13] 曹元元,丁逸帆,左示敏,等.基于GGE双标图和AMMI模型对江苏省水稻区试品种的丰产性和稳定性分析[J].种子,2021,40(6):38-43,51.
[14] 步清,鲁月,郝德荣,等.AMMI模型和GGE双标图在江苏省糯玉米品种区域试验中的应用[J].分子植物育种,2022,20(22):7628-7636.
Basic Information:
DOI:
China Classification Code:S513
Citation Information:
[1]杨通文,段明禹,李辉等.基于AMMI模型和GGE双标图的贵州省玉米新品种丰产性和稳定性分析[J].安徽农业科学,2025,53(16):12-17+20.
Fund Information:
遗义市科技计划项目(遵市科合HZ字(2024)173号)